Check Your Learning

Carboxylic Acids

Designed by Dr. Anuradha Mukherjee

Chemistry Affinity
Conceptual, Real world and Happy Learning

Write down IUPAC nomenclature

e)
$$CH_3$$
 - CH - $COOH$

c) 3,4-dihydroxybenzoic acid

e) 2-aminopropanoic acid

ÒН b) CH₃ - CH₂ - CH - COOH

- b) 2-hydroxybutanoic acid
- d) 3-methylbenzoic acid
- f) 2-ethylhexanoic acid

Write down IUPAC nomenclature

a)
$$CH_3(CH_2)_6 CH_2COCH_3$$

Methyl nonanoate

Ethyl butanoate

Isopropyl benzoate

d)
$$CH_3CH_2CO$$
— $CH_2CH_2CH_3$

Propyl propanoate

Complete the following reactions and name the products

$$OH$$
 + CH_3CH_2OH O CH_3 + H_2O

3-methylbutanoic acid

ethyl 3-methylbutanoate

Complete the following reactions and name the products

ethyl propionate

NaOH, H₂O

↑ + CH₃CH₂OH O propionic acid

ethyl propionate

sodium propionate

 H_2O

Complete the following reactions and name the products

$$V$$
-methylpropionamide V -methylpropionamid

Which of the following compounds is most reactive towards nucleophilic addition?

1. Most reactive towards nucleophilic addition means carbonyl carbon should have strong (+ve) charge

2. Strong (+ve) charge over the carbonyl carbon means charge should be less delocalized

In compound D, + ve charge on carbonyl carbon is more delocalized due to resonance and +I effect

In compound A, + ve charge on carbonyl carbon is more localized/intensified as it has only one methyl group, which exert +I effect

Therefore, compound A is most reactive to nucleophilic addition

Of the following, the strongest acid is:

- 1. o-NO₂C₆H₄COOH
- 2. p-NO₂C₆H₄COOH
- 3. m-NO₂C₆H₄COOH
- 4. PhCOOH

To finding out strongest acid we have to check most stable conjugate base

Most stable conjugate base means more forward reaction and more H+ ions form, thus acid become stronger

CB-2 is most stable because it has an **EWG NO₂** at ortho position, which delocalize the negative charge over oxygen and gives stability to CB-1

Therefore, o-nitro benzoic acid is strongest acid

What happens when (a) propanone and butanone are treated with methyl magnesium chloride and then hydrolyzed respectively

- (b) Benzene is treated with CH₃COCI in presence of anhy AICI3
 - (c) Sodium benzoate is heated with soda lime

(a)
$$H_3 = -C - CH_3 + CH_3 My CL$$

Acetone Methyl ranginesium Chiorite

 $H_3 = -C - CH_3 + CH_3 My CL$
 $H_3 = -C - CH_3 - CH_3$
 $H_3 = -C - CH_3$
 $H_3 = -C$

Friedel Craft's Acylation

How can you distinguish between propanal and propanone?

Write the products formed when $(CH_3)_3C$ -CHO reacts with the following reagents (i) CH_3COCH_3 in presence of dilute NaOH (ii) HCN, (iii) Conc NaOH

$$H_{3} = \frac{CH_{3}}{I} = \frac{CH_{3}}{I$$

Perfect